In 1968, Vladimir Miklyukov graduated from Donetsk State
University (Ukraine) with a diploma in Mathemitics and started his postgraduate study under supervision of Academician George D. Suvorov at Donetsk Computational Center (Ukraine, 19681970).
The results of his work of that time pertained to the problem of removable singularities, problem of existence of angular boundary values, stability estimates of quasiconformal mappings of a ball onto a ball, and the problem of existence of quasiconformal mappings with unbounded characteristics. He defended his Ph.D. thesis Theory of Quasiconformal Mappings in Space
in 1970 at Donetsk State University (Ukraine).
From 1970 to 1973, he was doing a research at the Institute of Applied
Mathematics & Mechanics (Donetsk, Ukraine).
From 1973 to 1981, he continued his career working as a docent (associated professor) at Tyumen
State University (Russia). While majoring in the field of quasiconformal
mappings theory, he also got interested in strong nonlinear elliptic
type PDE. The main publications of that timeframe were related to the direct problem of holomorphic functions approximation theory for domains with quasiconformal boundary (with Vladimir I. Beliy);the problem of boundary
behaviour of minimal graphs;estimates for extremal length of families of curves
on minimal surfaces;the PhragmenLindelöf and Ahlfors type theorems for
quasiconformal mappings in space;maximum principle for derivatives of
solutions for minimal surfaces type equations;Nitsche problem of minimal
surfaces lying overnarrow in infinity domains. In 1981 he defended
his doctoral thesis Capacity Methods in the Problem of Nonlinear Analysis
at Mathematical Institute of Ukrainian Academy of Sciences (Kiev, Ukraine).
In the same year, he became a fulltime professor and a chairman of the department of Mathematical
Analysis and Theory of Functions at Volgograd State University (Russia). His research interests concentrated on geometrical analysis. At the same time he was studying
zero mean curvature surfaces in Euclidean and pseudoeuclidean spaces,
nonlinear elliptic type PDE and quasiregular mappings of Riemannian manifolds.
The main results of that work were related to the following groups of
questions:
the external geometrical structure of zero mean curvature surfaces in
Euclidean and pseudoeuclidean spaces; spacelike tubes and bands of zero mean curvature, their stability and instability with respect
to small deformations, their lifetime, branches, connections between branch
points and Lorentz invariant characteristics of surfaces.
PhragmenLindelöf type theorems for differential forms; Ahlfors type
theorems for differential forms with finite or infinite number of different
asymptotic tracts; generalizations of Wiman theorem of forms, applications
to quasiregular mappings on manifolds; applications of isoperimetric methods
to the PhragmenLindelöf principle for quasiregular mappings on manifolds.
From July 1998 to July 2000, he was a visiting professor of Brigham Young University
(USA).
In 2004, he focused his research on the mathematical theory
of superslow processes and differential forms in micro and nanocanals, and founded the Laboratory of Superslow Processes (Volgograd State University, Russia).
Vladimir M. Miklyukov is the author of more than 200 publications
in Mathematics including the monographs: Conformal Maps of Nonsmooth
Surfaces and Their Applications;
 Introduction to Nonsmooth Analysis;
 Geometric Analysis: Differential Forms, Almost Solutions and Almost
Quasiconformal Maps;
 Tubes and Bands in SpaceTime (with Vladimir
A. Klyachin).
Learners of Vladimir Miklyukov are:

Doctor of Sci. (Math.) Prof. Victor I. Kruglikov, (Tyumen State Univ.);
 Victor I. Pelih, Ph.D., (Volgograd State Univ.);
 Vladimir A. Botvinnik, Ph.D., (Volgograd State Univ.);
 Vladimir M. Keselman, Ph.D.,(Moscow Industr. Univ.);
 Aleksandr D. Vedenyapin, Ph.D., (Volgograd State Univ.);
 Doctor of Sci. (Math.), Prof. Vladimir G. Tkachev (Volgograd State Univ.);
 Doctor of Sci. (Math.), Prof. Aleksey A. Klyachin (Volgograd State Univ.);
 Doctor of Sci. (Math.), Prof. Vladimir A. Klyachin (Volgograd State Univ.);
 Natalia V. Loseva, Ph.D.,, (Volzskiy Branch of Volgograd State Univ.);
 Repsime S. Akopyan, Ph.D. (Volgograd Univ. of Consumer Cooperation);
 Aleksey V. Kochetov, Ph.D., (Volgograd State Univ.).
